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ABSTRACT

70

This report describes experimental and theoretical work on the non-
linear vibration of uniform beams for various support conditions. The
experimental work is an account of an attempt to extend the Moiré method
to dynamic problems by use of high speed photography. The theoretical
work is mainly the development of a numerical procedure for investigating
vibration of nonlinear beams for those cases where the space and time

variables are not separable. A
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I. INTRODUCTION

The purpose of this program was to study, both theoretically and
experimentally, the behavior of continuous elastic systems such as beams
and plates when vibrating with amplitudes so large that the linear theory
for these systems is no longer applicable, but still sufficiently small to
ensure that the material behaved elastically at all times.

The differential equations of motion of such systems can be written
without great difficulty. They are, of course, nonlinear partial differential
equations. Thetechniques for solving such equations are, however, extremely
meagre,and one is more or less thrown on his own resources to obtain a
solution. It is no exaggeration to say that almost none of these equations
admit of an exact theoretical solution. Two possible approaches exist for
the solutivon of these differential equations. The first is an approximate
analytical solution, and the second is-a numerical step by step procedure.
The writer has preferred the first approach and has been successful in
devising some simple but approximate solutions which have already appeared

in the literaturel'z’ 3.

However, he has found it almost impossible to improve
on these solutions and to extend these methods to more complicated problems.
He has become convinced that the only practical procedure at the present

time is to use high speed digital computers together with suitable numerical

procedures.



The basic difficulty lies in the reduction of the system to one described
by an ordinary nonlinear differential equation. The simplest analytical pro-
cedure is to separate the variables, but this is generally impossible to do
exactly except for the very simplest equations. When numerical integration
procedures are employed, however, one essentially supposes that the motion
of the system can be described by an infinite number of linear partial differen-
tial equations, each equation being valid for a suitably chosen small interval
of time A, This procedure has been described in a previous report but will
be included here below again for completeness.

The present investigators believe that a vast accumulation of theoreti-
cal solutions is of little value unless a serious attempt is made to verify them
by experimental observation of real systems. Apart from the feeling of
confidence this could engender, it is believed that the feedback from
experimental work would help in advancing the theoretical concepts. Pri-
mary emphasis was therefore placed in the development of experimental
techniques for studying nonlinear vibrating systems, and this report is
therefore largely a description of these attempts.

The program was limited to studying the vibration of beams held so .
that during motion no displacement of the ends is permitted. This restraint
induces an axial tension in the beam and results in a nonlinearity of the

governing differential equation.



II. THEORETICAL WORK

The theoretical work was confined to developing a numerical procedure
for solving nonlinear beam problems for those cases where variables are not
separable. In particular the concept of "normal modes' was extended to such
cases.

The writer has pointed ou‘cl that certain nonlinear continuous systems,
characterized by the separability of the space and time variables, vibrate in
normal modes in the sense defined by Rosenberg4. In particular, the writer

has shown that a simply-supported beam rigidly held at its ends is capable

of vibrating in normal modes.

The motion of beams with axial tension is governed by the differential

equation
4 2 2
pr ¥ 8w, 3w (1)
ox4 Ox 2 ot
with
3 2
Na _1 (aw) d
—_ = —_— X
AE 2 ox
0

in which N is the axial force, w is the lateral deflection, p the mass density
per unit length, a the length of the beam, A its cross-sectional area, E is
Young's modulus, I is the moment of inertia, and t is time.

In the case of a simply supported beam, a sine function in the space
coordinate effectively separates the variables in (1), as is well known, and
normal modes emerge very simply. As far as the writer is aware, this

separability is confined to the simply supported case.



It is certainly very surprising that normal modes cannot be readily
defined for nonsimply supported beams. It is difficult to accept the con-
clusion that the concept breaks down completely when the boundary conditions
are changed. Consequently, it becomes necessary to generalize this concept
so as to take into account physical systems in which variables are not separable.
While the possibility of such theoretical extension exists, it is proposed
to investigate,first, by an approximate numerical procedure whether such
normal modes, conceived of intuitively, are stable.

A. Time Dependent Normal Modes

If one recalls the definition of normal modes in linear oscillations,
it is evident that they can occur only under certain, quite restrictive, initial
conditions. Thus, a beam will not vibrate in a normal mode unless it is
started exactly in the appropriate mode, which, in turn, depends on its
boundary conditions. A beam which is given an arbitrary starting shape will
not vibrate in a normal mode. While the concept itself may be of considerable
practical value, the point made here is that normal modes require restrictive
conditions for their actual occurrence.

Returning now to the system governed by equations (1), the simply
supported case (where the variables separate) is characterized by the fact
that the mode shape itself is independent of time ,being always a sine function.
In the case of other boundary conditions, since variables do not separate, one
must suppose that the normal modes are a function of time, the mode shape

altering continuously as the beam vibrates. However, if normal modes exist,



they must be stable; that is, the beam must return to a certain shape
periodically. If it does not, then the normal modes are unstable.

B. Numerical Procedure

In order to investigate analytically whether such time dependent
normal modes are stable, one must appeal to physical intuition for certain
basic assumptions. We suppose first that the axial tension N in (1) does not
vary very rapidly so that it may be assumed to remain constant for
sufficiently small intervals of time. If N is constant in the first of equations
(1), it is linear and normal modes exist, together with a denumerably infinite
sequence of discrete frequencies for any set of suitable boundary conditions.
At the end of the time interval, one may use the second of equations (1) to
calculate a new membrane tension and a new set of normal modes and natural
frequencies. Physical intuition suggests that the first normal mode (that is,
the normal mode corresponding to the lowest frequency) of the first time
interval will merge into the first normal of the second time interval and so
on for all subsequent time intervals and other normal modes. This is a
fundamental assumption of the investigation.

Since normal modes depend on the initial conditions, one must specify
such conditions consistently. Assuming that the beam is initially displaced
with zero initial velocity, the normal modes are completely defined by the
tension N.

For a constant N, one may assume that

w = X(x) exp(ipt) (2)

where X is a function of x alone.



The initial condition is specified by the tension parameter

(3)

Na’ Aa %2 % 2
_Na _ Aa * \
M oET T arl J; (X!) dx

in which f*, the amplitude of the displacement, is unknown to begin with, A

is the cross-sectional area and prime denotes differentiation with respect

to x.
For purposes of computation, it is convenient to write the relation
(3) in the form
2 2
N*a Ah™ . 2
mEADE T T4 PO (4)
with
N = N/N*
f = f>{</h
(5)
a
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where N* is the "buckling load' of the beam treated as a column and h is

any convenient dimension of the beam cross section, such as its depth.

If we let
a=[, + (u?+pHl/2)1/2
B=[(HZ+H2)1/Z'H]1/Z (6)
where
2 a4EZ
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then it may be shown by elementary procedures that for beams clamped at
(x = 0,a) and for beams clamped at x =0 and simply supported at x =a, the

normal modes X(x) are given by

cosl‘la—‘,ii-cos%i ﬁsinhc‘iaﬁ-asin%—X
X(x) = + , ; . (7)
cosha - cos B a sin 3 - B sinh a

The frequency equations for the two cases are, however, different.

For the clamped-clamped beam, the equation is

u(l - cosha cos ) + psinha sinf =0 (8)
and for the clamped simply-supported beam, the frequency equation is

a sin 3 cosha -~ cos 3 sinha =0 (9)

For a given p, a,  and u must satisfy equations (6) and (8) or (9).
The values of a, f and u may thus always be obtained by trial and error.
With a and B known, the mode shape is completely defined by (7). It is
to be noted, however, there are an infinity of the set (a, 8, u) for a given p.
We are, for the present, interested only in the set corresponding to the
lowest value of u.

Consider any time interval extending from r&.to (r +1) £, wherelis

a suitably small quantity. At time r A, the displacementandvelocity are given by
‘f:xr_l[fr_lcos(pr_laugr_lsin(pr_lan (10)

W .
vEp X pe Ity sin(p, (A g jcos (e AN (1)

The tension parameter is:
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Knowing p., one may calculate a,, By, p, and X,.. The displacement,

velocity and membrane tension for (r2) <t<(r + 1) Lare then given by

%’ = Xp(fpcospyt + gy sinpyt) (13)
vELE X p.(-f sinp t+g cos p_t) (14)
2
_Ah 2
Mr =741 £r0r (15)

However, the displacement, velocity and membrane force att =0
as given by (13), (14), and (15) must be the same as those given by (10), (11)
and (12) and so

X [f._jcos(p._ ;&) +g,_sinlp,._ A)] = X £ (16)

Xr- 1Pr- l[—fr-lSin(pr— 1 A) + Br-1 cos(pr_ 1 2] = errgr (17)

. 2 - f2
[fr_lcos(pr_lA) tg__, sin(p _lA)] .. = fge, (18)
From (18), we get
Sp - 1 1/2
fr:[fr_lcos(pr_1A)+gr_lsinpr_lA]( ? ) (19)
T

From (15) and (19)

1/2

Substitution in (16) yields

:pr-l

r pr

. ¢r-1\1/2
[-fr_lsm(pr_lA)+gr_lcos(pr_lA)]( I(;)r ) (20)



The relations (19) and (20) thus give f. and g, in terms of all the known
quantities and enable one to proceed to the next step. It is important in

this computation that the time steps be taken as small as practical,as otherwise
the results will indicate an unstable motion even when it is essentially stable.

Although when the beam is simply supported, an exact solution in
terms of elliptic functions can be obtained, it is of interest to apply the
numerical method to this case also to afford a comparison with the solutions
for other boundary conditions.

Figure 1 shows a plot of the center deflection ratio (w/h) against the
velocity/frequency ratio (v/h)/p, which may be called a modified phase plane.
If the motion considered is stable and periodic, a closed curve should result.

The parameters chosen.in the computations were those of the steel
specimens to be used in the experimental work and are as follows:

length = 30 in. depth = 0. 25 in. width = 0. 30 in.
The resulting nondimensional parameters are

A, =(El/a%p)l/2 = 19.456

A, = (Ah%/41) = 3
The parameter N\ was taken as 2.

In Figure l it may be noted that all the curves are essentially closed,
although not exactly so. Extended computations, with various values of the
time interval show, however, that the gap is a function of the time interval

and decreases as the interval decreases. In the computations the quantity

(p2) was taken as .005,and thus over 1000 intervals were required to
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complete 27 radians. A further decrease in the time interval seemed
unwarranted, especially as it has been established that any slight gap at
closure was an approximation error.

We conclude therefore that the motion is stable and periodic for
all boundary conditions, andthatitismeaningful to speak of a time dependent
normal mode.

C. Period of "Fundamental!" Mode

The nonlinear period T*of vibration for the "fundamental'' mode may

be written in the following form

T = 4K/p (21)
ch) 1/2

P =aZAl<l + vA) —h—2> (22)
2 2
_1 5 15

m_EVAZh_Z/(l+VAZh_Z> (23)

in which K is the complete elliptic integral of the first kind, p is the
frequency, f, is the initial displacement and m is the parameter of the
Jacobian elliptic functions. The parameters a and v have the following values
for the various boundary conditions:

(a) Simply supported

(b) Clamped-~-clamped
a =4.73, v =.3077
(c) Clamped-simply supported

a =3.927, v = 1.6697
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Formulas (21), (22) and (23) are theoretically exact only for the
simply supported case. For the other two cases they are approximate,
having been arrived at by applying a Galerkin approximation to the differential
equation3.
Table 1 gives a comparison of the fundamental period as arrived at
by formula (21) and by the numerical procedure outlined above.
It will be noted that the agreement is close for the simply supported case

only. For the other boundary conditions, formula (21) underestimates the

period as might be expected.



TABLE 1

FUNDAMENTAL PERIOD T* (INSECS)

SS

Formula (21) .02088

Num. Proc. .02080

SS = Simply supported

CC = clamped-clamped

CS =clamped-simply supported

CC
.00860

.00934

CS
.00878

.01348

13
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III. AIMS OF EXPERIMENTAL WORK

The experimental work had two main objectives in view. Theoretical
work has indicatedlthe existence of normal modes of vibration in nonlinear
continuous systems, similar in many respects to that observed in linear
systems. In particular, for simply supported beams such modes can be
described with relative simplicity; but for other conditions of support, the
nonlinear normal modes are difficult to describe analytically. A general
experimental technique was required which could enable the observation of
the shape assumed by a vibrating beam or plate continuously. A technique
with considerable appeal because of its inherent simplicity was the so-
called Moiré method5:6, which has been applied with some success to
study plates under static loads. It was felt that combined with high speed
photography this method should provide a simple way of observing the
behavior of vibrating beams and plates.

A second objective of the experimental work was considerably
simpler; namely, to see whether the theoretically predicted nonlinear
frequency of vibration could be verified experimentally. All these systems,
to a first approximation, describe a motion which can be represented by
elliptic sines and cosinesli2:3, However, unlike linear systems, the
frequency of vibration is a function of the initial displacement.

For this second objective the Moiré method could be used but is not
necessary, at any rate for beams. However, high speed photography was

essential because of the difficulty of supplying an elliptic-sine type
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excitation to the system; and therefore the free vibrations tended to be
damped out rapidly. The technique was to start the structure in a
(theoretical) normal mode and to photograph the vibrating beam edgewise

and then analyze the motion.

Both these methods were tried and are described in the following
sections. All the experiments thus far carried out were on beams, since

they constitute the simplest continuous system.
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IV. MOIRE METHOD

The method of Moiré fringes has become useful, as previously
noted, as an experimental tool in the analysis of structural components
under static loads. However, this method has apparently been untried
for the analysis of dynamic problems.

A photograph showing the general arrangement for the tests is
shown in Figure 2.

The beam is positioned in a base plate (Figure 3) fabricated from a
3-1/2-inch thick steel plate with a 15-inch by 30-inch window. This plate,
isolated from the floor and adjacent structures with one-inchneoprene padding
to reduce random vibrations in the test specimen, is anchored to a
concrete floor with two 1-3/4-inch bolts. Steel plates, one inch thick, are
used to clamp the test specimen.

The grid (Figure 4) was made from a durable type cardboard lined
with alternate black and white lines 0.1 inch in width.

The cardboard is mounted in a housing constructed on one-inch
aluminum plate (Figures 2 and 4). Channels in this housing allow not only
for placement of the grid parallel to the undeflected specimen but also afford
placement in circles with radii of 2-1/2 and 3-1/2 times the length of the
most distant part of the grid to the model surface. Such an arrangement
permits experimentation with various patterns so as to optimize clarity

and accuracy.
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The camera (Figure 2) is mounted behind the center of the grid and
views the specimen and the reflected grid from the most distant part of the
grid. Lighting is achieved by appropriate placement of flood lamps around
the edge of the base plate.

The static experiments conducted for calibration purposes consisted
of applying a known load to the end of a cantilever and comparing the actual
deflection with that computed from the Moiré patterns. The accuracy of the
results varied with the curvature of the grid used. Figure 5 (with the label
""1'") shows the reflected grid when the specimen is undeflected. Figure 6
(with the label '"4'"") shows the fringe pattern with grid plane flat and the
specimen loaded, and Figure 7 (with the label ''5") shows the fringe pattern
with the grid plane having a radius of curvature of 3.5d, where d is the
distance of the grid from the model. The flat grid gave relatively poor
results; whereas, the curved grid gave an excellent prediction of the
maximum deflection (.498 inch as against a measured deflection of 0.5 inch).

It should be noted that for the static tests, a cantilever specimen
was used (Figures 2 and 4); but, for the dynamic experiments, the test
fixture was modified to accommodate simply supported and clamped beams.

Two beams of different configurations were designed=--one for both
ends clamped, the other for both ends pinned (Figure 8). Each beam is
approximately 30 inches long, with a 0.250 inch or 0. 300 inch cross section,
fabricated from high strength steel plate, and having a . 25-inch reflective

surface machined to a No. 2 finish.
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FIGURE 5. CANTILEVER IN UNDEFLECTED POSITION
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FIGURE 6, CANTILEVER DEFLECTED ONE-HALF INCH AT
TIP, MOIRE PATTERNS WITH GRID FLAT

22




FIGURE 7. CANTILEVER DEFLECTED ONE-HALF INCH AT
TIP,MOIRE PATTERNS WITH GRID RADIUS OF
CURVATURE 3.5d (140 Inches)
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FIGURE 8.

SKETCH OF BEAMS USED IN EXPERIMENTS
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An extended effort was made to develop this technique into a practical
experimental procedure for determining frequencies and mode shapes of
nonlinear continuous vibrating systems. While experimenting with this
method, several difficulties were encountered. Some of these were over-
come, but others required extensive modification of equipment or additional
purchases which proved prohibitive due to allotted time and funds.

A Fastex, 16 millimeter, high speed motion camera, capable of
taking 8000 pictures per second, was used together with Wollensak '"Goose"
Control Unit. The "Goose' control unit provides a convenient means for
synchronizing, in proper time relationships, the Fastex camera operation
and the event being photographed. It also provides a means for safely
increasing the voltage over that normally applied to the camera so that
increased camera speeds may be obtained.

Tests revealed that the complexity of high speed photography in
conjunction with the Moiré method made this a very difficult experiment.
Resolution of the patterns recorded on some of the film, though visible,
was very poor. This can be attributed to several factors.

High speed photography requires optimum illumination of subjects
being photographed. Because of the technique employed by the Moiré method,
only reflected light could be used in these experiments. When proper camera
speed was used to record the action of the vibrating beam, the resulting
motion film was dark with no pattern definition on the image of the model.

A decreased camera speed revealed faint indication of the fringes, but the

speed of motion of the fringes was excessive.



26

Normally, high speed film must be used when photographing motion at
speeds found in a vibrating beam. Such films have a characteristically
grainy texture. This tends to distort the resolution of the reflected grid
lines, especially on as small an area as that afforded by the .250-inch
wide beam.

Since the method of obtaining Moiré fringes necessitates rewinding
of the film so that a double exposure of the beam (one before and one after
it is set in motion) can be made, a slight change in the position of the film on
its spool resulted in a relative displacement of the images of the beam in
the two exposures. Subsequent tests with a still camera revealed that the
double image of the beam could be eliminated by substituting a wider surface
mirror in place of the beam on the initial exposure, thereby simulating
the grid lines on the beam in its neutral position. The second exposure
was then made of the statically deflected beam so that only one picture of
the beam itself was taken.

When applying this technique to the dynamic situation, however, the
camera failed to yield a film with resolution of the patterns such that a
quantitative analysis could be made. Indications are that in addition to the
difficulties already mentioned, use of two different reflective surfaces
requires both to have the same reflective qualities. Otherwise, one
overshadows the other and definition of the fringes is lost. Efforts to blend

the two images on the same film by different lens settings were unsuccessful.



In selecting the material from which the model beam was to be
fashioned, consideration had to be given to obtaining one which had or could
be polished to a mirror-like finish. At the same time, the material had to
be fabricated into a particular shape and further must possess sufficient
yield strength so that its elastic behavior for large amplitudes was insured.
High strength steel with a yield point of 80, 000 psi was selected with one
side lapped and polished to a No. 2 finish. This proved satisfactory when
preliminary static tests were performed to check out apparatus. However,
the dynamic tests revealed that a more reflective surface on the beam would
be necessary for sufficient definition of the fringes.

In brief, the attempt to use the Moiré fringe method for vibrating
beam problems has turned out thus far to be unsuccessful. This does not
mean that the difficulties are insuperable. A necessary condition for
successful application of the method seems to be the availability of high
speed film with a very fine grain. It appears also that the technique would
be more successfully applied to plates than to beams in which the narrow-
ness of the reflecting surface inevitably renders the delineation of the fringe
patterns very difficult. However, this could possibly be overcome with a

fine grained film.

27



V. NATURAL FREQUENCIES OF NONLINEAR BEAMS

The Moiré method is not necessary when one is interested only in
the vibration of beams. One could theoretically obtain much useful informa-
tion by photographing the vibrating profile of the beam.

To achieve this,the position of the camera was changed such that the
beam could be photographed from above to record the actual deflections
during vibration (Figure 9). The beam was painted black with white lines
indicating pertinent points along its length to be measured for deflection
during the vibration cycles. Surrounding fixtures and background were
painted white to accentuate the contrast with the image of the beam on the
film. Five photo flood lamps were focused on the beam to supply necessary
light to photograph the beam during motion using a camera setting of 5000
frames per second. The Fastex 16-MM camera loaded with Kodak Tri-X
high speed reversal film was again used to conduct these experiments.

Positioning of the beam in the desired mode shape was achieved by
wedging a lightweight aluminum load plate with 7 adjustable screws, placed
to correspond with the white lined points on the beam, between a backup
assembly and the beam (Figure 10). The backup assembly, which could be

adjusted horizontally to deflect the model the proper distance, consisted of

28

a 1/4" X217 X2'X 30 inch long angle and a 2-1/2""X1-1/2" X 20 inchlong spacer

plate (Figure 1l1). The screws, mounted in the load plate and with round
heads to reduce friction, were adjusted so that their ends formed seven

points of the predetermined mode shape of the beam.
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FIGURE 9. COMPLETE ASSEMBLY OF APPARATUS USED IN
EXPERIMENTAL WORK TO DETERMINE NONLINEAR PERIOD
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FIGURE 10. CLAMPED-CLAMPED BEAM INITIALLY DISPLACED
AND READY FOR RELEASE
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The model was set in vibratory motion by sudden withdrawal of the
load plate. This was achieved by a spring-loaded plunger (Figure 11), which
when released would strike the edge of the load plate nearest the backup
assembly, thereby knocking it away and allowing the model to vibrate freely.
Camera start and plunger release were synchronized to allow acceleration
of the film from 0 to 5000 frames per second.

The processed film was analyzed using a Traid Motion Analyzer,
which permitted frame by frame inspection. Deflection of the beam at
various time intervals in the first 2 or 3 cycles was measﬁred at each of the
seven points along the beam using a base line which simulated one edge of
the beam in its neutral position. The'period of the cycle was determined by
multiplying the number of frames involved in one complete cycle by the
time interval between frames. These data were then reduced and compared
with the theoretical formulae.

The inherent difficulties of this method of setting the beam in vibra-
tion are obvious. The first difficulty lay in closely approximating the
theoretical fundamental mode shape. While this is a simple half sine wave
in the case of the simply supported beam, it assumes quite a complex
mathematical form in the clamped case being dependent on the membrane
tension. Adjusting the beam shape to conform to the theoretical form at
seven points is still a crude approximation only, and inclusion in it of higher

modes is unavoidable. This, of course, could greatly influence both the
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period of vibration and the mode of the vibration. Secondly, this method

is restricted by the rapid decrease in the amplitude of the motion, so that
one is limited to studying the first two or three cycles of the motion in order
to obtain information on large amplitude vibrations.

Altogether, eleven (11) tests were conducted for the simply supported
and for the clamped-clamped case. Only the amplitude of the initial dis-
placement was varied in the different cases. Two types of information were
sought, namely, the mode shape and the period of vibration. An essential
assumption, of course, is that £if the initial starting shape is not a true
mode, the subsequent vibration will not persist in that mode for simply
supported beams or return to that mode for clamped beams. Obviously,
in the case of clamped beams, the agreement with theory cannot be expected
to be particularly good because of the change of amplitude from cycle to cycle.

It has not been possible to reproduce information pertaining to all of
the tests. The results of a few of the tests are presented in Figures 12 to 18
together with a comparison with theoretical data.

Figures 12 and 13 show the motion of the center-point of the beam
for the clamped-clamped case and the simply supported case. It will be noted
that in both cases the experimental beam had a smaller frequency of motion.
The damping out of the motion is observable in the reduction of the amplitude
of the displacement.

Figures 14 to 16 show the mode shapes assumed by the beam at the
times noted. The mode shapes are 'normalized', that is, all ordinates are

divided by the maximum ordinate of that curve.
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Finally, Figures 17 and 18 show a plot of the ratio

sis
R

. . f . .
_ Nonlinear Period against the amplitude ratio-2 _Maximum Displacement .

T Linear Period h Depth of Beam

It is seen that while the trend of the curve is reasonably well duplicated,
especially in the simply supported case, the agreement between theory and

experiment is not satisfactory.
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VI. CONCLUSIONS

The experimental program has involved all kinds of difficulties that
were not foreseen,leading to rather unsatisfactory results. Despite this,
the present investigator is confident that all the problems encountered in
experimental technique can be overcome by suitable modifications.

It appears essential for the further development of the Moiré method
that one should be equipped with a fast as well as fine grained}film. Generally,
the method can be applied with sufficient accuracy only to structures with
fairly large reflective surfaces such as plates.

The load application method needs to be modified and improved. It
is obvious that a sinusoidal excitation will be of little value in locating the
natural frequencies because of the possibility of subharmonic resonance,
among other reasons. Possibly, an elliptic sine type excitation, if one can
be designed and applied, may lead to fruitful results.

The program makes it abundantly clear that an experimental investi-
gation of nonlinear vibration characteristics is beset with many difficulties
and several methods require patient and possibly prolonged investigation.

The theoretical studies established the stability of '"time dependent
normal modes' for systems where space and time variables are not separable.
It is believed that future progress in this area must lie in the development

and refinement of numerical integration procedures for such systems.
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